Thursday, December 31, 2015

238. Product of Array Except Self

Given an array of n integers where n > 1, nums, return an array output such that output[i] is equal to the product of all the elements of nums except nums[i].
Solve it without division and in O(n).
For example, given [1,2,3,4], return [24,12,8,6].
Follow up:
Could you solve it with constant space complexity? (Note: The output array does not count as extra space for the purpose of space complexity analysis.)
Java Code:

236. Lowest Common Ancestor of a Binary Tree

Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
        _______3______
       /              \
    ___5__          ___1__
   /      \        /      \
   6      _2       0       8
         /  \
         7   4
For example, the lowest common ancestor (LCA) of nodes 5 and 1 is 3. Another example is LCA of nodes 5 and 4 is 5, since a node can be a descendant of itself according to the LCA definition.
Java Code:

235. Lowest Common Ancestor of a Binary Search Tree

Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
        _______6______
       /              \
    ___2__          ___8__
   /      \        /      \
   0      _4       7       9
         /  \
         3   5
For example, the lowest common ancestor (LCA) of nodes 2 and 8 is 6. Another example is LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.

Java Code:

234. Palindrome Linked List

Given a singly linked list, determine if it is a palindrome.
Follow up:
Could you do it in O(n) time and O(1) space?
Java Code:

233. Number of Digit One

Given an integer n, count the total number of digit 1 appearing in all non-negative integers less than or equal to n.
For example:
Given n = 13,
Return 6, because digit 1 occurred in the following numbers: 1, 10, 11, 12, 13.
Hint:
  1. Beware of overflow.
Java Code:

232. Implement Queue using Stacks

Implement the following operations of a queue using stacks.
  • push(x) -- Push element x to the back of queue.
  • pop() -- Removes the element from in front of queue.
  • peek() -- Get the front element.
  • empty() -- Return whether the queue is empty.
Notes:
  • You must use only standard operations of a stack -- which means only push to toppeek/pop from topsize, and is empty operations are valid.
  • Depending on your language, stack may not be supported natively. You may simulate a stack by using a list or deque (double-ended queue), as long as you use only standard operations of a stack.
  • You may assume that all operations are valid (for example, no pop or peek operations will be called on an empty queue).
Java Code:

230. Kth Smallest Element in a BST

Given a binary search tree, write a function kthSmallest to find the kth smallest element in it.
Note: 
You may assume k is always valid, 1 ≤ k ≤ BST's total elements.
Follow up:
What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kthSmallest routine?
Hint:
  1. Try to utilize the property of a BST.
  2. What if you could modify the BST node's structure?
  3. The optimal runtime complexity is O(height of BST).
Java Code:

229. Majority Element II

Given an integer array of size n, find all elements that appear more than ⌊ n/3 ⌋ times. The algorithm should run in linear time and in O(1) space.
Hint:
  1. How many majority elements could it possibly have?
  2. Do you have a better hint?
Java Code:

228. Summary Ranges

Given a sorted integer array without duplicates, return the summary of its ranges.
For example, given [0,1,2,4,5,7], return ["0->2","4->5","7"].

Java Code:

227. Basic Calculator II

Implement a basic calculator to evaluate a simple expression string.
The expression string contains only non-negative integers, +-*/ operators and empty spaces . The integer division should truncate toward zero.
You may assume that the given expression is always valid.
Some examples:
"3+2*2" = 7
" 3/2 " = 1
" 3+5 / 2 " = 5
Note: Do not use the eval built-in library function.
Java Code:

226. Invert Binary Tree

Invert a binary tree.
     4
   /   \
  2     7
 / \   / \
1   3 6   9
to
     4
   /   \
  7     2
 / \   / \
9   6 3   1
Trivia:
This problem was inspired by this original tweet by Max Howell:
Google: 90% of our engineers use the software you wrote (Homebrew), but you can’t invert a binary tree on a whiteboard so fuck off.
Java Code:

225. Implement Stack using Queues

Implement the following operations of a stack using queues.
  • push(x) -- Push element x onto stack.
  • pop() -- Removes the element on top of the stack.
  • top() -- Get the top element.
  • empty() -- Return whether the stack is empty.
Notes:
  • You must use only standard operations of a queue -- which means only push to backpeek/pop from frontsize, and is empty operations are valid.
  • Depending on your language, queue may not be supported natively. You may simulate a queue by using a list or deque (double-ended queue), as long as you use only standard operations of a queue.
  • You may assume that all operations are valid (for example, no pop or top operations will be called on an empty stack).
Java Code:

224. Basic Calculator

Implement a basic calculator to evaluate a simple expression string.
The expression string may contain open ( and closing parentheses ), the plus + or minus sign -non-negative integers and empty spaces .
You may assume that the given expression is always valid.
Some examples:
"1 + 1" = 2
" 2-1 + 2 " = 3
"(1+(4+5+2)-3)+(6+8)" = 23
Note: Do not use the eval built-in library function.
Java Code:

223. Rectangle Area

Find the total area covered by two rectilinear rectangles in a 2D plane.
Each rectangle is defined by its bottom left corner and top right corner as shown in the figure.
Rectangle Area
Assume that the total area is never beyond the maximum possible value of int.
Java Code:

222. Count Complete Tree Nodes

Given a complete binary tree, count the number of nodes.
Definition of a complete binary tree from Wikipedia:
In a complete binary tree every level, except possibly the last, is completely filled, and all nodes in the last level are as far left as possible. It can have between 1 and 2nodes inclusive at the last level h.
Java Code:

221. Maximal Square

Given a 2D binary matrix filled with 0's and 1's, find the largest square containing all 1's and return its area.
For example, given the following matrix:
1 0 1 0 0
1 0 1 1 1
1 1 1 1 1
1 0 0 1 0
Return 4.

Java Code:

220. Contains Duplicate III

Given an array of integers, find out whether there are two distinct indices i and j in the array such that the difference between nums[i] and nums[j] is at most t and the difference between i and j is at most k.

Java Code:

219. Contains Duplicate II

Given an array of integers and an integer k, find out whether there are two distinct indices i and j in the array such that nums[i] = nums[j] and the difference between i and is at most k.

Java Code:

218. The Skyline Problem

A city's skyline is the outer contour of the silhouette formed by all the buildings in that city when viewed from a distance. Now suppose you are given the locations and height of all the buildings as shown on a cityscape photo (Figure A), write a program to output the skyline formed by these buildings collectively (Figure B).
Buildings Skyline Contour
The geometric information of each building is represented by a triplet of integers [Li, Ri, Hi], where Li and Ri are the x coordinates of the left and right edge of the ith building, respectively, and Hi is its height. It is guaranteed that 0 ≤ Li, Ri ≤ INT_MAX0 < Hi ≤ INT_MAX, and Ri - Li > 0. You may assume all buildings are perfect rectangles grounded on an absolutely flat surface at height 0.
For instance, the dimensions of all buildings in Figure A are recorded as: [ [2 9 10], [3 7 15], [5 12 12], [15 20 10], [19 24 8] ] .
The output is a list of "key points" (red dots in Figure B) in the format of [ [x1,y1], [x2, y2], [x3, y3], ... ] that uniquely defines a skyline. A key point is the left endpoint of a horizontal line segment. Note that the last key point, where the rightmost building ends, is merely used to mark the termination of the skyline, and always has zero height. Also, the ground in between any two adjacent buildings should be considered part of the skyline contour.
For instance, the skyline in Figure B should be represented as:[ [2 10], [3 15], [7 12], [12 0], [15 10], [20 8], [24, 0] ].
Notes:
  • The number of buildings in any input list is guaranteed to be in the range [0, 10000].
  • The input list is already sorted in ascending order by the left x position Li.
  • The output list must be sorted by the x position.
  • There must be no consecutive horizontal lines of equal height in the output skyline. For instance, [...[2 3], [4 5], [7 5], [11 5], [12 7]...] is not acceptable; the three lines of height 5 should be merged into one in the final output as such: [...[2 3], [4 5], [12 7], ...]
Java Code:

217. Contains Duplicate

Given an array of integers, find if the array contains any duplicates. Your function should return true if any value appears at least twice in the array, and it should return false if every element is distinct.

Java Code:

216. Combination Sum III

Find all possible combinations of k numbers that add up to a number n, given that only numbers from 1 to 9 can be used and each combination should be a unique set of numbers.
Ensure that numbers within the set are sorted in ascending order.

Example 1:
Input: k = 3, n = 7
Output:
[[1,2,4]]

Example 2:
Input: k = 3, n = 9
Output:
[[1,2,6], [1,3,5], [2,3,4]]
Java Code:

215. Kth Largest Element in an Array

Find the kth largest element in an unsorted array. Note that it is the kth largest element in the sorted order, not the kth distinct element.
For example,
Given [3,2,1,5,6,4] and k = 2, return 5.
Note: 
You may assume k is always valid, 1 ≤ k ≤ array's length.
Java Code:

214. Shortest Palindrome

Given a string S, you are allowed to convert it to a palindrome by adding characters in front of it. Find and return the shortest palindrome you can find by performing this transformation.
For example:
Given "aacecaaa", return "aaacecaaa".
Given "abcd", return "dcbabcd".
Java Code:

213. House Robber II

Note: This is an extension of House Robber.
After robbing those houses on that street, the thief has found himself a new place for his thievery so that he will not get too much attention. This time, all houses at this place are arranged in a circle. That means the first house is the neighbor of the last one. Meanwhile, the security system for these houses remain the same as for those in the previous street.
Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.
Java Code:

212. Word Search II

Given a 2D board and a list of words from the dictionary, find all words in the board.
Each word must be constructed from letters of sequentially adjacent cell, where "adjacent" cells are those horizontally or vertically neighboring. The same letter cell may not be used more than once in a word.
For example,
Given words = ["oath","pea","eat","rain"] and board =
[
  ['o','a','a','n'],
  ['e','t','a','e'],
  ['i','h','k','r'],
  ['i','f','l','v']
]
Return ["eat","oath"].
Note:
You may assume that all inputs are consist of lowercase letters a-z.
You would need to optimize your backtracking to pass the larger test. Could you stop backtracking earlier?
If the current candidate does not exist in all words' prefix, you could stop backtracking immediately. What kind of data structure could answer such query efficiently? Does a hash table work? Why or why not? How about a Trie? If you would like to learn how to implement a basic trie, please work on this problem: Implement Trie (Prefix Tree) first.

Java Code:

Wednesday, December 30, 2015

211. Add and Search Word - Data structure design

Design a data structure that supports the following two operations:
void addWord(word)
bool search(word)
search(word) can search a literal word or a regular expression string containing only letters a-z or .. A . means it can represent any one letter.
For example:
addWord("bad")
addWord("dad")
addWord("mad")
search("pad") -> false
search("bad") -> true
search(".ad") -> true
search("b..") -> true
Note:
You may assume that all words are consist of lowercase letters a-z.
Java Code:

210. Course Schedule II

There are a total of n courses you have to take, labeled from 0 to n - 1.
Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]
Given the total number of courses and a list of prerequisite pairs, return the ordering of courses you should take to finish all courses.
There may be multiple correct orders, you just need to return one of them. If it is impossible to finish all courses, return an empty array.
For example:
2, [[1,0]]
There are a total of 2 courses to take. To take course 1 you should have finished course 0. So the correct course order is [0,1]
4, [[1,0],[2,0],[3,1],[3,2]]
There are a total of 4 courses to take. To take course 3 you should have finished both courses 1 and 2. Both courses 1 and 2 should be taken after you finished course 0. So one correct course order is [0,1,2,3]. Another correct ordering is[0,2,1,3].
Note:
The input prerequisites is a graph represented by a list of edges, not adjacency matrices. Read more about how a graph is represented.
Hints:
  1. This problem is equivalent to finding the topological order in a directed graph. If a cycle exists, no topological ordering exists and therefore it will be impossible to take all courses.
  2. Topological Sort via DFS - A great video tutorial (21 minutes) on Coursera explaining the basic concepts of Topological Sort.
  3. Topological sort could also be done via BFS.
Java Code:

209. Minimum Size Subarray Sum

Given an array of n positive integers and a positive integer s, find the minimal length of a subarray of which the sum ≥ s. If there isn't one, return 0 instead.
For example, given the array [2,3,1,2,4,3] and s = 7,
the subarray [4,3] has the minimal length under the problem constraint.
Java Code:

208. Implement Trie (Prefix Tree)

Implement a trie with insertsearch, and startsWith methods.
Note:
You may assume that all inputs are consist of lowercase letters a-z.

Java Code:

207. Course Schedule

There are a total of n courses you have to take, labeled from 0 to n - 1.
Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]
Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?
For example:
2, [[1,0]]
There are a total of 2 courses to take. To take course 1 you should have finished course 0. So it is possible.
2, [[1,0],[0,1]]
There are a total of 2 courses to take. To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible.
Note:
The input prerequisites is a graph represented by a list of edges, not adjacency matrices. Read more about how a graph is represented.
Hints:
  1. This problem is equivalent to finding if a cycle exists in a directed graph. If a cycle exists, no topological ordering exists and therefore it will be impossible to take all courses.
  2. Topological Sort via DFS - A great video tutorial (21 minutes) on Coursera explaining the basic concepts of Topological Sort.
  3. Topological sort could also be done via BFS.
Java Code:

206. Reverse Linked List

Reverse a singly linked list.

Java Code:

205. Isomorphic Strings

Given two strings s and t, determine if they are isomorphic.
Two strings are isomorphic if the characters in s can be replaced to get t.
All occurrences of a character must be replaced with another character while preserving the order of characters. No two characters may map to the same character but a character may map to itself.
For example,
Given "egg""add", return true.
Given "foo""bar", return false.
Given "paper""title", return true.
Java Code:

204. Count Primes

Description:
Count the number of prime numbers less than a non-negative number, n.
Hint:
  1. Let's start with a isPrime function. To determine if a number is prime, we need to check if it is not divisible by any number less than n. The runtime complexity of isPrime function would be O(n) and hence counting the total prime numbers up to n would be O(n2). Could we do better?
  2. As we know the number must not be divisible by any number > n / 2, we can immediately cut the total iterations half by dividing only up to n / 2. Could we still do better?
  3. Let's write down all of 12's factors:
    2 × 6 = 12
    3 × 4 = 12
    4 × 3 = 12
    6 × 2 = 12
    
    As you can see, calculations of 4 × 3 and 6 × 2 are not necessary. Therefore, we only need to consider factors up to √n because, if n is divisible by some number p, then n = p × q and since p ≤ q, we could derive that p ≤ √n.
    Our total runtime has now improved to O(n1.5), which is slightly better. Is there a faster approach?
    public int countPrimes(int n) {
       int count = 0;
       for (int i = 1; i < n; i++) {
          if (isPrime(i)) count++;
       }
       return count;
    }
    
    private boolean isPrime(int num) {
       if (num <= 1) return false;
       // Loop's ending condition is i * i <= num instead of i <= sqrt(num)
       // to avoid repeatedly calling an expensive function sqrt().
       for (int i = 2; i * i <= num; i++) {
          if (num % i == 0) return false;
       }
       return true;
    }
    
  4. The Sieve of Eratosthenes is one of the most efficient ways to find all prime numbers up to n. But don't let that name scare you, I promise that the concept is surprisingly simple.

    Sieve of Eratosthenes: algorithm steps for primes below 121. "Sieve of Eratosthenes Animation" by SKopp is licensed under CC BY 2.0.
    We start off with a table of n numbers. Let's look at the first number, 2. We know all multiples of 2 must not be primes, so we mark them off as non-primes. Then we look at the next number, 3. Similarly, all multiples of 3 such as 3 × 2 = 6, 3 × 3 = 9, ... must not be primes, so we mark them off as well. Now we look at the next number, 4, which was already marked off. What does this tell you? Should you mark off all multiples of 4 as well?
  5. 4 is not a prime because it is divisible by 2, which means all multiples of 4 must also be divisible by 2 and were already marked off. So we can skip 4 immediately and go to the next number, 5. Now, all multiples of 5 such as 5 × 2 = 10, 5 × 3 = 15, 5 × 4 = 20, 5 × 5 = 25, ... can be marked off. There is a slight optimization here, we do not need to start from 5 × 2 = 10. Where should we start marking off?
  6. In fact, we can mark off multiples of 5 starting at 5 × 5 = 25, because 5 × 2 = 10 was already marked off by multiple of 2, similarly 5 × 3 = 15 was already marked off by multiple of 3. Therefore, if the current number is p, we can always mark off multiples of p starting at p2, then in increments of pp2 + pp2 + 2p, ... Now what should be the terminating loop condition?
  7. It is easy to say that the terminating loop condition is p < n, which is certainly correct but not efficient. Do you still remember Hint #3?
  8. Yes, the terminating loop condition can be p < √n, as all non-primes ≥ √n must have already been marked off. When the loop terminates, all the numbers in the table that are non-marked are prime.
    The Sieve of Eratosthenes uses an extra O(n) memory and its runtime complexity is O(n log log n). For the more mathematically inclined readers, you can read more about its algorithm complexity on Wikipedia.
    public int countPrimes(int n) {
       boolean[] isPrime = new boolean[n];
       for (int i = 2; i < n; i++) {
          isPrime[i] = true;
       }
       // Loop's ending condition is i * i < n instead of i < sqrt(n)
       // to avoid repeatedly calling an expensive function sqrt().
       for (int i = 2; i * i < n; i++) {
          if (!isPrime[i]) continue;
          for (int j = i * i; j < n; j += i) {
             isPrime[j] = false;
          }
       }
       int count = 0;
       for (int i = 2; i < n; i++) {
          if (isPrime[i]) count++;
       }
       return count;
    }
Java Code: